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LETTER TO THE EDITOR 

Large-N spontaneous magnetisation in zero dimensions 

G M Cicuta, L Molinari and E Montaldi 
Dipartimento di Fisica, Universita di Milano and INFN, Sezione di Milano, Italy 

Received 27 October 1986 

Abstract. A two-parameter model of Hermitian matrices in zero-dimensional space is 
solved in the large-N limit. A very interesting phase diagram and a spontaneous magnetisa- 
tion are exhibited. 

Field theoretical models with matrix valued field variables display interesting and 
unusual properties in the limit of infinite order of the matrices. Indeed it was recently 
shown [ 1,2] that such models exhibit a third-order phase transition, for sufficiently 
negative values of the squared mass, even in zero dimensions of spacetime. 

In this letter we study the large-N limit of the matrix model with quartic interaction 
and a linear coupling to a constant external field. This limit, though in a zero- 
dimensional model, is a sort of thermodynamic limit for the volume of the internal 
symmetry group and leads to effects similar to those of the usual thermodynamic limit 
for systems in two or three space dimensions. It is then likely that these investigations 
will provide insights into many statistical mechanics models and into the Goldstone 
and Goldstone-Higgs mechanisms in quantum field theory. 

We consider the partition function 

Z (  m’, g, h )  = lim d N 2 M  exp{-[Tr(fm2M2+ (g/ N)M4 - h m M ) ] }  
N-CC J 

) -‘ x (  5 d N 2 M  exp[-(’zIm’lTt M2)3 

where M is a Hermitian N x N matrix, g is a positive number and m2 and h are real 
numbers. Since g may be chosen equal to one, without loss of generality, the model 
actually depends on the two dimensionless variables (Y = ‘zl~g-”~, p = im2g-”2. In the 
large-N limit, the spectral function U(,+), that describes the eigenvalue density, solves 
the saddle point equation 

j L  d p 3 = f m ’A + 2gA - h 

with A E L, the unknown support of u(A).  The Green functions Gp( m 2 ,  g, h )  = (Tr( M p ) )  
are given by the moments 

P 

G p ( m 2 ,  g, h )  = dA A p u ( A ) .  1, ( 3 )  

With the single-segment ansatz L, =[A, D], (2) is easily inverted by standard 
methods [3]. We find 

u(A ) = - [( D - A ) (  A - A)]”2[2A2 + (A + D) A +i(A + D ) 2  +a( D - A)’ + m2/  2gl. g 
(4) 

?r 
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The extrema A and D are determined by the two coupled equations for U = A + D 
and 6 = D - A ,  which follow by requiring that the Green function generator 

behaves as 1 / A  for large values of [ A  I. They are 

2gu’ + 3 g d 2  + 2m2u - 4h = 0 

3gS4+ 12g6202+4m262-64=0.  

The density u(A) is non-negative definite provided one of the following conditions 
is satisfied: 

cl(@, 6) = 3 ~ ~ + 2 ~ ~ + 4 m ’ / g 3 0  if A S  -:US D ( 8 )  
C2(a, 6) = 6u2+  3S2 + 6u6 + 4 p  3 0 

C3( U, 6)  = 6u2  + 3 6’ - 6 ~ 6  + 4p 2 0 

2( gp2 - 20) 3’2 = 4 p  ( 1 lp2 - 60) - 135 a 2  

if -:U 3 D 

if -:U s A. 

( 9 )  

(10) 

The condition Cl(u, 6)  = 0 defines a curve in the ( a ,  p )  plane given by the equation 

( 1 1 )  

whereas the curve corresponding to C 2 ( q  6)  = 0 is conveniently expressed in the 
parametric form 

p = - 2 ( t 2 - 2 t + 2 )  - 
( * 3 ( 4 3 _  1 ) )  

with 0 < t s 3. The third curve is obtained from the second with the exchange a + -a 
(figure 1 ) .  

Equations (4), (6) and (7 )  define a unique solution, hereafter called the weak 
coupling solution, in the region of the (a ,  p )  plane outside the shaded area and above 

/ 
0 

0 

Figure 1. The phase diagram of the model in terms of the two dimensionless parameters. 
The full curve represents the border between the weak and the strong coupling solutions. 
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the broken curves. In the shaded area there are no positive solutions for such equations, 
while in the region below the broken curves there are two positive solutions. One is 
the analytic continuation of the unique solution from the region above and it leads to 
a first-order phase transition along the a = 0 line, if /3 < -a. The other solution, for 
a > 0, may be regarded as the analytic continuation of the weak coupling solution 
with a < 0 across the a = 0 line and it represents an unstable physical solution. 

Then for (a, p )  in the shaded area, we consider a two-segment ansatz L 2 =  
[A ,  B ]  U [ C, D ] ,  with A zz B s C s D. This choice leads to the evaluation of several 
definite elliptic integrals. Nonetheless, simplifications occur in all the relevant quan- 
tities which may be written in terms of elementary functions. We find 

u ( A ) = ( g / . i r ) 4 ( A ) ( 2 A + A + B + C + D )  (13) 

where 4 ( A ) = * t [ ( D - A ) ( h  -C)(A - B ) ( h  -A)]”’  and the upper (lower) sign holds 
for A E [C ,  D](A E [A ,  B ] ) .  The asymptotic condition on F ( A )  now implies the three 
equations: 

AB+AC + A D +  BC + BD+ CD =as’+ m 2 / 2 g  

ABC + ABD + ACD + BCD = is3+ ( m 2 / 2 g ) S  + h / 2 g  

(14) 

(15) 

(16) 

where S = A + B + C + D. The requirement U( A ) 5 0, A E L2,  implies B s -4s s C. 
However we verify that the saddle point equation (2), with the density u ( A )  given in 
(13)-(16), is still satisfied at A = -$. Then -fS is B or C, and therefore 4(-$) = 0, 
i.e. 

ABCD = AS4 + $( m2/g)S2 + ( h  / 2 g )  S + m4/ 16g’ - 1 /g 

15S4+12(mZ/g)S2+12(h/g)S+(m4/g2-16/g) = O .  (17) 

Equation (17), essential for the determination of the solution, makes the Green 
of the 

support Lz. 
The set of equations (13)-( 17) allows two solutions in the shaded area (and none 

outside it): the physical one, hereafter called the strong coupling solution, is smoothly 
connected to the weak coupling solution across the boundary, thus resulting in a 
high-order phase transition on the boundary and a first-order phase transition along 
the segment a = 0, -a< /3 < -2. The second solution, for positive a, is the analytic 
continuation of the strong coupling solution for negative a across the a = 0 line and 
it represents an unstable solution. 

function generator stationary with respect to variations of the baricentre 

It is now possible to evaluate the magnetisation M = G,(g, m2 ,  h )  

as 
M = [ dAhu(A) = g- ( 6 a 2 + 3 S Z + 2 m 2 / g )  

Ll 64 

for the weak coupling solution and 

M =  [ d A A u ( A ) = - ~ g S 5 - f m 2 S 3 - ~ h S 2 + ( 1  - m 4 / 1 6 g ) S - m 2 h / 8 g  (19) 
L2 

for the strong coupling solution. In the limit of vanishing external field, a non-trivial 
magnetisation appears for /3 < -2. The behaviour of M is described in figure 2. 



L70 Letter to the Editor 

‘1 P 

i a 

Figure 2. Magnetisation curves plotted against the external field, for various negative values 
of the dimensionless parameter p. Spontaneous magnetisation develops for p < -2. 

A related model, with complex matrices and a different coupling to the external 
fields, was recently studied [2] by solving the recursive Schwinger-Dyson equations 
in the large-N limit. A transition curve in the parameter space was found, where the 
free energy has a third-order phase transition, quite analogous to our equation (11). 
However, the method did not lead to the evaluation of the density u(A) .  The boundary 
between the two phases found in [2] corresponds to the square of our equation ( l l ) ,  
after taking into account the different coupling to the external field. It seems that the 
further conditions, analogous to (9) and (lo), were missed. Our finding that the weak 
coupling solution holds up to infinite coupling casts some doubt on the conclusions 
of that letter. 

We thank F Riva and P Butera for useful discussions. 
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